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Abstract
The linear real space renormalization group is applied to study alternating spin
(1/2, 1) chains. The temperature dependences of the specific heat and spin–spin
correlation functions for the quantum easy-axis mixed-spin chain are found.
The role of single-ion anisotropy is discussed. The phase diagram of Ising spin
chains with antiferromagnetic intrachain interactions and weak ferromagnetic
interchain interactions is presented. As one expects, the weak interchain
coupling leads to antiferrimagnetic long-range order in several chains. The
threshold value of single-ion anisotropy below which the system does not
exhibit a phase transition is found.

1. Introduction

Ferrimagnets are systems made of ions having different spins, mostly of two types, s �= S.
In the simplest case these spins are arranged alternately on a bipartite lattice and they are
coupled by a nearest-neighbour antiferromagnetic exchange interaction. Such systems exhibit
a wide variety of interesting physical phenomena, especially in one dimension, and they have
been studied by several theoretical methods: quantum Monte Carlo (MC) and spin wave
(SW) theory [1], density matrix renormalization group (DMRG) [2] or modified SW [3].
The growing interest in the properties of mixed-spin systems is a result of the synthesis of
bimetallic magnetic chains [4]. Many of the interesting phenomena observed in these systems
have been explained from theoretical studies on spin isotropic models in one dimension at very
low temperature. However, experimentally, the alternating spin chains have been found to be
quasi-one-dimensional materials [5], and a weak interchain coupling that can be responsible for
an eventual magnetic order becomes crucial one, at sufficiently low temperature. Thus, here
we focus on the role of weak interchain coupling and single-ion anisotropy. The goal of this
paper is also to show that both the finite-temperature critical behaviour and the thermodynamic
(nonuniversal) properties of the weakly interacting mixed-spin chains can be studied by a
method based on the linear-perturbation renormalization group transformation (LPRG) [6].
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We consider, in this paper, two kinds of spin, s = 1
2 and S = 1, alternating on chains

with intrachain antiferromagnetic exchange interaction between nearest neighbours, described
by the Hamiltonian

H0 =
∑

α=x,y,z

Kα

M∑

j=1

N/2∑

i=1

(sα
2i−1, j Sα

2i, j + Sα
2i, j s

α
2i+1, j ) + d

∑

i

(Sz
2i, j )

2

+ h
M∑

j=1

N/2∑

i=1

(sz
2i−1, j + Sz

2i, j ), (1)

and weak ferromagnetic interchain couplings between nearest chains given by

HI =
∑

α=x,y,z

K s
α

∑

i, j

sα
i, j s

α
i, j+1 +

∑

α=x,y,z

K S
α

∑

i, j

Sα
i, j Sα

i, j+1, (2)

where Sα
i (sα

i ) represents a spin 1 (spin 1/2), and the factor −1/T has already been absorbed in
the Hamiltonian (Kα = −Jα/T , d = −D/T , h = −magnetic field/T ).

The paper is organized as follows. We start with a brief review of the LPRG scheme for
a mixed-spin system in section 2. In section 3 the specific heat and the spin–spin correlation
function of the alternating quantum spin chain are considered. In section 4 the LPRG technique
is applied to study the character of the phase transition of weakly interacting mixed-spin Ising
chains. Finally we summarize our results in section 5.

2. Linear renormalization group transformation (LRG)

We define the renormalization transformation by

exp[H′(�σ, ��)] = Tr�s,�S P(�s, �S; �σ, ��) exp[H(�s, �S)], H = H0 + HI . (3)

The weight operator P ≡ P(�s, �S; �σ, ��) which couples the original (�s, �S) and effective
spins (�σ , ��) is chosen in a linear form. This means that the projector of the system is defined
as a product of the individual spin projectors,

P =
N/2−1∏

i=0

ps
i (�s, �σ)pS

i (�S, ��), (4)

where the total number of spins is N , and ps
i ≡ ps

i (�s, �σ ) and pS
i ≡ pS

i (�S, ��) represent
projectors for a spin 1

2 and 1, respectively. The weight operator ps
i (�s, �σ) which couples the

original to the new spins 1
2 can be written in the following general (for the Ising and quantum

spins) form:

ps
i = 1

2

(
1 + 4

∑

α=x,y,z

sα
6i+1σ

α
2i+1

)
, (5)

and the weight operator pS
i (�S, ��) which couples the original and the new spins 1 for the Ising

model is chosen as [7]

pS
i =

⎡

⎣1 − (Sz
6i+4)

2 − (�z
2i+2)

2 + 1
2 Sz

6i+4�
z
2i+2 + 3

2

(
∑

α

Sα
6i+4�

α
2i+2

)2
⎤

⎦ , (6)

whereas for the quantum Heisenberg model it is chosen as [7]

pS
i =

∏

i

⎡

⎣−1 +
∑

α=x,y,z

Sα
6i+4�

α
2i+2 +

(
∑

α=x,y,z

Sα
6i+4�

α
2i+2

)2
⎤

⎦ . (7)
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Figure 1. Renormalization scheme. Open circles denote decimated spins. Small circles and discs
refer to spin 1

2 , and large ones to spin 1.

The transformation (3) with the projector (4) is the decimation transformation. Assuming
that the spins s = 1/2 and S = 1 are at the odd and even sites, respectively, in the
renormalization step only every sixth spin (s1, s7, s13, . . .) from the s = 1/2-sublattice (5)
and every sixth spin (S4, S10, S16, . . .) from the S = 1-sublattice (6) or (7) are preserved
and (s1, S2, s3, S4, s5, S6, s7, S8, s9, S10, . . .) → (σ1, �2, σ3, �4, . . .). The LPRG approach,
similarly to the Suzuki–Takano (ST) one [8], starts with a decimation for a one-dimensional
(1D) system. Then, on the basis of it, the interchain interaction is renormalized in a
perturbative way [6]. In this paper, the chain is divided into four-spin blocks to admit
periodic (antiferrimagnetic) structure with period 2, and only one block is considered. In each
renormalization step, every third spin from every other row survives (figure 1).

For a single Ising chain (Kx = Ky = 0, K s
α = 0, and K S

α = 0) the transformation
using (3)–(6) leads to the renormalized Hamiltonian H′ in the form

H′
0 = z0 + K ′

z

∑

i

σ z
i �z

i+1 + d ′∑

i

(�z
i )

2, (8)

where

z0 = ln (2 + 2 ed + ed−Kz + ed+Kz ), (9)

K ′
z = ln

L1

L2
, d ′ = ln

L1 L2 ed−3Kz

64z2
0

, (10)

and

L1 = 3 ed + 8 eKz + 8 e2Kz + 15 ed+Kz + 9 ed+2Kz + 5 ed+3Kz

L2 = 5 ed + 8 eKz + 8 e2Kz + 9 ed+Kz + 15 ed+2Kz + 3 ed+3Kz .
(11)

By using the transformation (9)–(11) the free energy per spin can be calculated from the
formula

f =
∞∑

n=1

ln z0(K (n)
z , d(n))

3n
, (12)

which reproduces exactly the rigorous result for the alternating spins (1/2, 1) Ising model free
energy

fexact = − 1
2 T ln{2(eD/T [1 + cosh(Jz/T )] + 1)}. (13)

In figure 2 the specific heat c of the alternate-spin Ising chain as a function of the
reduced temperature (T/J ) for several values of d is presented. For −1 < d < dg, where
dg ≈ −0.7683, a double-peak specific heat structure is observed as a result of a competition
between the antiferromagnetic ordering interaction Kz and condensation of the spins S = 1 at
the state S = 0 caused by the single-ion term d .

In the presence of the external magnetic field the LRG transformation generates new odd
terms. Instead of the one external field h one has to take into account two of them, conjugate
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Figure 2. Temperature dependence of the alternate-spin Ising chain specific heat for d = 0 and
−0.5 (dashed lines) d = −0.77 and −0, 9 (solid lines), and d = −1 and −3 (thin lines).
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m

Figure 3. Magnetization as a function of field for t = 1/3, and d = 0 (dashed line) d = −1 (thin
line), and d = −3 (solid line).

to spins s = 1/2 (hs ) and S = 1 (hS), respectively, and additionally the third-order term hm

comes into play:

hm
∑

i

sz
i (Sz

i+1)
2. (14)

Also, in this case the analytical formulae for the renormalized couplings K ′
z, d ′, (hs)′, (hS)′,

and (hm)′ and spin-independent term z0 (9) can be found quite easily, although they are, of
course, much more complicated. Using these formulae we may calculate numerically the field
dependence of the free energy and then other thermodynamic quantities. The magnetization
per spin m and specific heat for the alternating-spin Ising model as functions of the external
magnetic field h for the original values of parameters hs = hS = h and hm = 0 are presented
in figures 3, 5, and 6. Figure 3 shows the field dependence of the magnetization at the reduced
temperature t = 1

3 for several values of d . The trace of the zero-field magnetic plateau at
m = 0.25 [(S − s)/2] and the saturation for the high field at m = 0.75 [(S + s)/2] are visible.
The trace of the plateau disappears for d = −1 where the antiferromagnetic interaction Kz

and single-ion term d balance each other. In figure 4 the sublattice magnetizations m 1
2

and

m1 as functions of the magnetic field for t = 1
3 and d = −1 are presented. In figures 5

and 6 the field dependences of the magnetization and specific heat for d = 0 and d = −3,
respectively, are shown. In both cases the specific heat exhibits three-peak structure connected
with remagnetization processes.
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2
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Figure 4. Sublattice s = 1/2 (thin line) and S = 1 (bold line) magnetizations per sublattice spin as
functions of field for t = 1/3 and d = −3.
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Figure 5. Magnetization (solid line) and specific heat (dotted) as functions of field for t = 1/3, and
d = 0.
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Figure 6. Magnetization (solid line) and specific heat (dotted) as functions of field for t = 1/3, and
d = −3.

3. Alternating-spin XXZ chain

In this section, we consider a 1D quantum spin system defined by the Hamiltonian (1) with
Kx = Ky , and h = 0 (X X Z model). For a quantum system, because of the non-commutativity
of several terms of the Hamiltonian (1), the renormalization transformation (3), (4), (5), (7)
cannot be carried out exactly even for a 1D lattice and in zero magnetic field. The decimation
procedure takes the quantum effect into account within a single cluster [8], in our case four
spins, and neglects the effect of non-commutativity of several clusters. This means that the
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Figure 7. Specific heat of the alternate uniaxial Kx /Kz = 0.2 model for d = 0, 0.5, and 0.7 (thin
lines), and d = −0.8 (dashed line), and d = −1, −2, and −3 (solid lines) from left to the right.

0.2 0.4 0.6 0.8
t

0.1
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0.3

0.4

0.5

G

Figure 8. Temperature dependence of the Ising model correlation for d = 0, −1, and −3 from top
to the bottom.

LRG procedure may deteriorate at low temperature. However, for sufficiently high temperature
it should lead to reasonable results.

Applying the transformation (3), (4), (5), (7) to the 1D X X Z model Hamiltonian one
obtains the transformed Hamiltonian H′ in the same form as the original one with new
parameters K ′

x , K ′
z, d ′, and the constant term z0 independent of σα and �α (see the appendix).

Using the recursion formulae (A.5) one can find the free energy and specific heat of the 1D
X X Z model with single-ion anisotropy. In figure 7 the temperature dependence of the specific
heat of the uniaxial (Kx/Kz = 0.2) model for several values of the single-ion anisotropy is
presented. As is seen, similarly as for the Ising model the second maximum of the specific heat
at d ≈ −0.8 appears. However, in this case, due to transverse fluctuations this maximum does
not vanish for d � −1 as in the Ising model case.

To check the short-range structure of our system and an eventual ground-state long-range
order we can find the temperature dependence of the two-spin longitudinal GL and transverse
GT correlation functions defined as

GL(T ) = −〈sz(x)
i Sz(x)

i+1 〉. (15)

To compare, in figure 8 the two-spin correlation function (G) for the Ising model is presented.
Of course, in the latter case for d > −1, G tends to 1/2 as T → 0 which means
(anti)ferrimagnetic ground-state long-range order. For d = −1, G → 1/6, and for d < −1,
G → 0 for T → 0, with all spins 1 at the state S = 0. In figure 9 both longitudinal (solid
lines) and transversal (dashed and thin lines) correlation functions of the uniaxial model for
d = 0,−1,−2, and −3 are presented. As one expects, there is no fully saturated ferrimagnetic
ground state even for d = 0 (GL < 0.5). Instead, the finite transverse fluctuations (bottom



Renormalization of ferrimagnetic alternating spin chains 11053

0.25 0.5 0.75 1 1.25 1.5
t

0.1

0.2

0.3

0.4

GL,T

Figure 9. Temperature dependence of the X X Z model correlation for d = 0, −1,−2 and −3; solid
lines from top to the bottom denote longitudinal correlation, and dashed lines denote transverse
correlation for d = 0,−1 (top), and thin lines for d = −2 (top), −3, respectively.

-3 -2.5 -2 -1.5 -1 -0.5
d

0.1

0.2

0.3

0.4

G0
L,T

Figure 10. Zero-temperature correlation as function of d for the uniaxial model Kx /Kz = 0.2—
longitudinal (dashed line) and transverse (solid line) and for Heisenberg model—thin lines (the
bottom line refers to G L

0 ).

dashed line in figure 9) are observed, and GT ≈ 0.0725 for T → 0 at d = 0. GL decreases
with decreasing d , and for d = −1 goes to 0.154 55 which is slightly less than Ising value
1/6, but also for d < −1 due to the quantum fluctuations it has finite values. The transverse
correlation first increases with decreasing d , reaches a maximum at d = −1 and then decreases.

It should be emphasized once more that the procedure in which we confine ourselves
to the relatively small cluster and neglect the effect of non-commutativity of several clusters
can fail at very low temperature and particularly at a ground state. However, it seems that
the zero-temperature values of the correlation functions can be reasonable extrapolated from
higher temperatures (compare figure 9) at least for easy-axis systems. The results of such an
extrapolation for the uniaxial model with Kx/Kz = 0.2 and Heisenberg model with isotropic
exchange interaction (Kx = Kz) are presented in figure 10. As is seen, there is a sharp change
in the correlation functions behaviour of the uniaxial model about d � −0.8 where single-ion
anisotropy balances the exchange anisotropy. For d < −0.8 one gets a planar (easy-plane)
model with no long-range order at T = 0 (critical state). The same is of course the case for the
isotropic exchange model with any negative single-ion anisotropy.

4. Weakly coupled Ising chains

We now consider an infinite number of mixed-spin Ising chains at finite temperature, where the
chains are coupled by weak interchain interactions K s

z and K S
z (2). For the LPRG procedure
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we use the cluster (4–6–4) presented in figure 1, with four spins (sz
1 , Sz

2, sz
3, Sz

4 ), six spins and
again four spins for the first, second, and third row, respectively. The spins from odd rows are
decimated; this means

(sz
1, Sz

2 , sz
3, Sz

4) → (σ z
1 , �z

2),

and spins from even rows are removed (a trace is carried out). In addition, for simplification we
confine ourselves to only two-spin bilinear interactions, thereby neglecting three- and four-spin
interactions which are generated by the RG for the (4–6–4) cluster. Thus, in the second-order
cumulant expansion only one new interaction comes into play:

K m
z

∑

〈i j〉
sz

i, j Sz
i+1, j+1, (16)

where i refers to rows and j refers to columns.
As usual, the transformation (3) can be written in the form

H′(σ, �) = H′
0 + ln 〈 eHI (s,S)〉, (17)

with standard cumulant expansion [9] for 〈exp [HI (s, S)]〉, H′
0 for a decimated row is

presented in equation (8), and

〈A〉 ≡ Trs,S AP(s, S; σ, �) eH0 (s,S)

Trs,S P(s, S; σ, �) eH0 (s,S)
. (18)

For the cluster shown in figure 1, the interchain Hamiltonian HI contains the interaction
between the first and second rows H12 and between second and third rows H23.

To evaluate the transformation (17) one has to know the averages of several spins and
spin products from decimated (odd) and removed (even) rows. The latter ones are of course
numbers. For example, to find contributions to H′(σ, �) from 〈H2

12〉, the averages 〈S2
i 〉 and the

averages of the two-spin products are needed. All of them have a form

a0 + a1σ1�2 + a2�
2
2 . (19)

where ai are functions of the intrachain parameters. Hereafter for convenience we will omit the
superscript z. In order to find the contributions from 〈H12H23〉, one has to know the averages
of several spins 〈si 〉 and 〈Si 〉 which generally have a form

c1σ1 + c2�2 + c3σ1�2 + c4�
2
2 , (20)

where ci are also functions of the intrachain parameters. However, because we are interested
only in two-spin interactions it is sufficient to consider in the latter case only linear terms in the
effective spins.

Now we are able to evaluate numerically the renormalization transformation (17) from the
original set of five parameters (Kz, d, K s

z , K S
z , K m

z ) to the set of renormalized ones. Choosing
as original values K m

z = 0 and K s
z = K S

z = q Kz with q � 0.8, we find for d > −1.26 two
fixed points which describe the behaviour of the system at T = 0 and ∞, and also the critical
surface at the space of five parameters. The critical lines in the plane (tc = 1/K c

z , q) for several
values of the single-ion anisotropy are presented in figure 11. As is seen, a change in the critical
line behaviour is observed at d = −1. For d < −1 the critical line does not reach the point
q = 0. For d < dg(q), where dg(0.8) < −1.26 there is only one fixed point describing the
system at T = ∞. This means that a system with q � 0.8 and d < −1.26 does not undergo
a finite-temperature phase transition. It is well known that such a limit value of d below which
there is no phase transition for pure S = 1 (Blume–Capel, BC) model [10] is observed, and
it has also been found by using the LPRG [7]. However, in contradistinction to the pure BC
model in the mixed-spin case we have not found any tricritical point and in consequence a
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0.6

0.8

tc

Figure 11. Critical temperature of coupled ferrimagnetic Ising chains as a function of interchain
interaction q for d = 1, 0,−1 (solid line), −1.1,−1.2,−1.26 from left to the right, respectively.
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1.2

c

Figure 12. Temperature dependence of the specific heat for the ferrimagnetic Ising chains coupled
by interchain ferromagnetic interaction δ = K2/K1 = 0.3 for d = 0,−1,−1.05 (solid lines) and
d = −1.5 and −3 (thin lines) from right to the left, respectively.

region of d for which the system undergoes a discontinuous (first-order) phase transition. Such
a point was found by means of the LPRG [7] for the pure S = 1 system. Figure 12 shows
the temperature dependence of the specific heat for several values of d for which the system
exhibits a phase transition to the ordered ferrimagnetic state (solid lines) and for which there is
no phase transition (thin lines).

5. Conclusion

We have applied the real-space RG method to study ferrimagnetic chains made of alternating
spins (1/2, 1). We have focused our attention on the role of the weak interchain coupling
which, from the experimental point of view, is present in all, so-called, quasi-one-dimensional
systems [11], single-ion anisotropy [12], and validity of the LRG as a method for the description
of mixed-spin systems.

As we discussed in our previous papers [6, 7], the LPRG is reliable at high temperature.
The method starts with a decimation for a chain which can be done exactly for the Ising model,
and then the interchain interaction is renormalized in a perturbative way. So, for the models of
the Ising type, the control parameter plays, to some extent, the role of the interchain interaction.
The application of the LPRG to quantum systems needs some additional approximations
because of the non-commutativity of the several terms of the Hamiltonian. However, it was
shown [6] for example that for the s = 1/2XY chain the free energy found by using LRG at
K = J/T ≈ 1 differs by less than 1% from the exact value. Unfortunately, an exact treatment
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Figure 13. Temperature dependence of the internal energy of the Heisenberg model (per spin pair)
found from the LRG with a four-spin cluster (solid line), a six-spin cluster (thin line), and from the
EFS (points), respectively.

is not available for the model considered in this paper. Thus, to check the validity of the results
we compare the internal energy per spin pair (1/2, 1) for the mixed-spin Heisenberg model
found by the LRG with four- and six-spin clusters and from the exact results computed for
finite rings (EFS) [13]. As is seen from figure 13, the results are very close to each other for
high temperature and can be improved by increasing the size of the cluster used. We have not
found any results for the anisotropic models which could be compared with ours. However,
one would expect that the LPRG should work better for the models with uniaxial (Ising-type)
symmetry considered in this paper.

First we have defined the RG transformation with the projector which couples the
original spins s = 1/2 and S = 1 and effective spins σ = 1/2 and � = 1. Such a
transformation reproduces exactly the rigorous results for the 1D mixed-spin Ising model.
The field dependences of the magnetization with a ‘plateau’ and specific heat with three-peak
structure, for several values of the single-ion anisotropy, have been presented.

For the quantum alternating-spin easy-axis chain the specific heat as a function of
temperature, similarly as for the Ising model, shows a two-peak structure starting from
d ≈ −0.8. However, in this case we are not able to decide for which value of d the second
maximum disappears because, as we have already mentioned, for a quantum model our method
is less reliable at very low temperature. We have also calculated the temperature dependence
of the nearest-neighbour spin–spin correlation function for several values of the single-ion
anisotropy. For the Ising model such a function exhibits a jump from G = 1

2 to 0 at d = −1 and
T = 0. This indicates the ground-state phase transition from the fully saturated ferrimagnetic
phase to the disordered phase with all spins S = 1 at the state 0. For the quantum easy-axis
chain with Kx/Kz = 0.2, sharp changes in both the longitudinal and transverse correlation
functions are observed at d ≈ −0.8. This indicates the zero-temperature phase transition from
a non-saturated ferrimagnetic state to the critical state of the 1D quantum planar model.

Finally, the phase diagram of the mixed-spin ( 1
2 , 1) chains with antiferromagnetic

intrachain interaction coupled by weak ferromagnetic interchain interactions has been found.
The weak interchain interaction leads to antiferrimagnetic long-range order in several chains
provided d > dg(q) and the temperature is sufficiently low. Similarly as for the pure S = 1
BC model, for the mixed-spin model there is also a threshold value of the single-ion anisotropy
d = dg(q) below which there is no phase transition. However, in contradistinction to the BC
model, the mixed-spin model does not undergo a first-order phase transition for any value of d .
The temperature dependence of the specific heat of the model with K s

2 = K S
2 = 0.3 for several

values of d has been presented. For d > dg(q = 0.3) ≈ −1.05 the specific heat is singular at
the phase transition temperature and for d < dg(0.3) an upturn of the specific heat is observed.
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Appendix. Recursion relations

Applying the transformation (3), (4), (5), (7) to the four-spin cluster (�s1, �S2, �s3, �S4)α of the 1D
X X Z model with the projector (4) for the αth cluster

Pα = ps
α(�s1, �σ1)pS

α(�S4, ��2), (A.1)

we get the renormalized Hamiltonian as

H′
α = ln [ f0 + fkz σ

z
1 �z

2 + fkx (σ
x
1 �x

2 + σ
y

1 �
y
2 ) + fd(�

z
2)

2], (A.2)

where

f0 = 1
12 Tr�s1,�S4

[2(Sx
4 )2 − 1] eH, fkx = 1

6 Tr�s1,�S4
sx

1 Sx
4 eH,

fd = 1
12 Tr�s1,�S4

[(Sz
4)

2 − (Sx
4 )2] eH, fkz = 1

6 Tr�s1,�S4
sz

1 Sz
4 eH.

(A.3)

This allows us to find the renormalized Hamiltonian in the same form as the original one:

H′
α = z0 + K ′

zσ
z
1 �z

2 + K ′
x(σ

x
1 �x

2 + σ
y

1 �
y
2 ) + d ′(�z

2)
2, (A.4)

with

z0 = 1

2q
[(q + 2 fd − fkz ) ln λ1 + (q − 2 fd + fkz ) ln λ2],

K ′
z = 2 fkx

q
ln

λ2

λ1
,

K ′
x = 1

2q
[2q ln λ3 − (q − 2 fd + fkz ) ln λ1 − (q + 2 fd − fkz ) ln λ2],

d ′ = 1

2q
[2q ln λ3 − (q + 6 fd − 3 fkz ) ln λ1 − (q − 6 fd + 3 fkz ) ln λ2],

(A.5)

and

λ1 = 1
4 (4 f0 + 2 fd − fkz − q), λ2 = 1

4 (4 f0 + 2 fd − fkz + q),

λ3 = f0 + fd + 1
2 fkz , q =

√
8 f 2

kx
+ ( fkz − 2 fd)2.

(A.6)
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